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Abstract 
 

The present paper is focused on modeling of statistical data processing with 
applications in field of material science and engineering. A new method of data 
processing is presented and applied on a set of 10 Ni–Mn–Ga ferromagnetic ordered 
shape memory alloys that are known to exhibit phonon softening and soft mode 
condensation into a premartensitic phase prior to the martensitic transformation itself. 
The method allows to identify the correlations between data sets and to exploit them later 
in statistical study of alloys. An algorithm for computing data was implemented in 
preprocessed hypertext language (PHP) and a hypertext markup language interface for 
them was also realized and put onto comp.east.utcluj.ro educational web server and it is 
accessible via http protocol at the address http://comp.east.utcluj.ro/~lori/research/ 
regression/linear/v1.4/. The program running for the set of alloys allow to identify groups 
of alloys properties and give qualitative measure of correlations between properties. 
Surfaces of property dependencies are also fitted. 
 
Keywords: Shape memory alloys, Modeling, Analytical methods, Automat processing of 
data. 

 
 
1. INTRODUCTION 
 
 Many statistical procedures for processing data are now available [1]. Most of them 
offer a voluble set of possibilities and variants, but which one to consider them? That is not a 
easy question and the frequent answer is: that is choice of analyst [2,3]. 

Data mining technology offer in this area of knowledge some answers, but not a 
complete answer [4]. By other hand, to interpret experiment results, data need to be well 
processed [5]. 

Structure investigations are frequently combined with statistical processing [6]. In 
most of cases, best results are obtained with specific procedures in contrast to general numeric 
algorithms [7,8]. Modeling of structure is benefit to property predictions [9,10]. Nonstandard 
statistical evaluation procedures then are helpful [11]. 
 The presented model make data preprocessing to a set of 10 Ni–Mn–Ga ferromagnetic 
ordered shape memory alloys that are known to exhibit phonon softening and soft mode 
condensation into a premartensitic phase prior to the martensitic transformation itself and is a 
extension added to the model presented in book [12]. 



2. METHOD 
 

The logic scheme of data preprocessing is presented in figure 1. 
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Fig. 1. Data automat processing algorithm 
  
 The INPUT module read a text format data, process input data, split it into rows and 
columns and computes average means. 
 If name n_rows it assigned to number of rows, n_cols to number of columns, data to 
array of data, the output of module INPUT is computed by formulas: 
 

 M[i,j] = 
rows_n

]j][k[data]i][k[data
rows_n

1
∑
=

⋅
k ; M[0,j] = 

rows_n

]i][k[data
rows_n

1k
∑
= , 1 ≤ i, j ≤ n_cols (1) 

 
Linear regression and PLS (partial least squares) are most used methods in statistical 

processing of data. Presented method uses them. 
 The output of INPUT module is used as input in GAUSS and RESULTS modules. 
 GAUSS module solves a linear system of equations in form: 
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 If answer of algorithm solving is undetermined system and null variable is xn_cols then 
GAUSS module solve determined system of n_cols order given by equation (3): 
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If answer of algorithm solving is undetermined system and null variable is different 

form xn_cols then GAUSS module pass extended system matrix to REDUCT ORDER module. 
 If is input in REDUCT ORDER module then is an undetermined system and this it 
extract null row and column corresponding to the null variable (figure 2) and the resulting 
matrix of (n_cols-1)× n_cols dimension is passed again to GAUSS module. 
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Fig. 2. Processing data in REDUCT ORDER module 
 
 When system is solved a unique solution is found. Then, system extended matrix 
contain at column n_cols the coefficients of regression equation: 
 

0axa...xa...xa 1cols_ncols_ncols_nii11 =+⋅++⋅++⋅ +      (4) 
 

where the coefficients an_cols+1 and an_cols+1 are resulted regression coefficients. Note that 
equation (4) is in implicit form; to obtain an explicit form is necessary to extract dependent 
variable from (4). The last coefficient is assigned to -1: 
 
 an_cols+1 = -1          (5) 
 
 At the end of module SOLUTION it result an implicit linear regression equation 
between given variables through his values in columns (equation 4). Equation 4 can be 
exploited to obtain explicit linear regression equations for each variable which has no null 
coefficient ai: 
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 Sum of residues Si can be now evaluated: 
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 To compare one equation to another, an order value is required. Let to explicit this. If 
x1 values (data[1] from input) are percents expressed in values from 0 to 100 and x2 are 
premartensitic temperatures transformation expressed in K with values from 100 to 600, then 
also sum of residues are expressed square of same measurement units. To make independence 
of measurement unit and measure order, values Si are divided with own sum of squares of 
variable measurements (M[i,i] from INPUT module, equation 1). Final equation, with 
substitution xi = data[k,i],  1 ≤ k ≤ n_rows and summing is: 
 

 Qi = ∑ ∑ /M[i,i]     (9) 
= =

+









⋅+

rows_n

1k

2cols_n

1j i

j

i

1cols_n ]i,k[data
a
a

a
a



and express relative residues of variable xi when variable xi is assumed to be dependent of 
independent variables x1, …, xi-1, xi+1, xcols. Note that the dependence and independence 
statistical concept is hard to prove in practical situations, but will see later, can be decelerated. 
For a good correlation, Qi should be smallest possible value. 
 Another quantitative measure for a good correlation is correlation coefficient between 
measured data xi and estimated values from equation (6). Assuming that M is mean 
operator, for r is given by: 
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 The absolute value of r must be high for a good correlation. More additionally tests are 
also available in other programs such as Microsoft Excell or Statsoft Statistica. 
 
 
3. ALGORITHM AND IMPLEMENTATION 
 
 The implementation of algorithm is relative simple, if are used a flexible language 
processing. In terms of programming, portability of resulted program can be a problem. As 
example, if we are chose to implement the algorithm in Visual Basic, the execution of the 
program is restricted to Windows machines. If Perl is our choice, a Unix-based machine is 
necessary to run program. Even if we chouse to implement the program in C language, we 
will have serious difficulties to compile the programs on machines running with different 
operating systems. 
 Other questions require an answer: We want a server based application or client based 
application? We want a server side application or a client side application? 
 As example, a client side application can have disadvantage of execution on client, 
and dependence of processing speed by power of client machine. If we prefer this variant, a 
java script or visual basic script is our programming language. 
 Most benefit to portability and execution speed seems to be a PHP (post processed 
hypertext) variant of implementation. A PHP script can be put on any server or client with 
PHP processor and executed from them trough http server (Apache, Squid, …) and client 
(Internet Explorer, Netscape). 
 Another advantage of using PHP is the possibility to link our algorithm with a 
materials database (d-Base, Interbase, MySQL, PostGres format) and input data can be then 
loaded from them. 
 As conclusion, a PHP implementation is our choice.  
 A graphical interface was built in html with a TEXTAREA for input data and an 
INPUT SUBMIT button for submitting data to the server. The server is a Free BSD Unix 
based server with an Apache web server running on. The server is hosted in educational 
network of Technical University of Cluj-Napoca with address 193.226.7.211 and name 
comp.east.utcluj.ro. 
 With PHP technology, was build a routine for pseudo domain names, that redirect 
client to different pages, depending on his input of domain name in client http browser. 
 The program build have 21 subroutines and a main program, specified below: 
• function af_ec($n,$coef,&$t) // display an equation; 
• function af_mt($titlu,&$tabel,$n_r,$n_c) //display any matrix with a title; 
• function af_rez($n_r,$n_c,&$d,&$m,&$c,&$t,$n_o,$pr) //list a table with best equations 

founded; 



• function ch_ln($l1,$l2,&$cc,$r) // Gauss linear algebra method, change two lines in system 
extended matrix; 

• function cnk($k,$n_r,$n_c,&$data,&$tab,$pr,&$dep,&$inv) //make recursive all possible 
combination c(n,k); 

• function data_copy($n_r,$n_c,&$d,&$t,&$d_t,&$n_t) //extract a subset of data from entire 
set; 

• function do_means(&$data,&$mean,$n_rows,$n_cols) //make all (xi, xi*xj) means; 
• function ec_by($n,&$coef,$by,&$c_by) //calculate coefficients for explicit equation from 

implicit equation coefficients; 
• function ec_val($n,&$valori,&$coef) //compute value of implicit equation in given point 
• function estimare($n_r,$n_c,&$d,&$c,$x,&$x_est) //compute value for explicit equation in 

given point for given dependent variable; 
• function im_ln($nr,$rw,&$cc,$r) //Gauss linear algebra method, make a unitary element 

into system extended matrix; 
• function mx_rw($cl,&$cc,$r) //Gauss linear algebra method, find the best line for zeroes in 

system extended matrix; 
• function n_to_s($nr) //format and display a real number; 
• function r_stat($n,$k,&$d1,&$d2) //compute correlation coefficient r; 
• function rd_gs($cc,$r,&$cf) //Gauss linear algebra iterative algorithm; 
• function reg_lin_1($n_r,$n_c,&$d,&$t,$pr) //make linear regression if possible; return 

answer; 
• function res(&$t,$n) //reset counter for recursive c(n,k); 
• function sum_r($n_rows,$n_cols,&$data,&$coef,$cor) //calculate sum of residues; 
• function ze_pd(&$cc,$r) //Gauss linear algebra method, make supdiag. zeroes in system 

matrix; 
• function ze_sd($e,&$cc,$r) //Gauss linear algebra method, make subdiag. zeroes in system 

matrix; 
• main program //input data and requested minimal correlation coefficient and display 

founded equations; 
 
 
4. RESULTS AND DISCUSSION 
 
 A set of Ni–Mn–Ga ferromagnetic ordered shape memory alloys are used for 
investigation [13]. The properties are described in table 2. 
 
Table 2. Processed Data 

Column Property Measurement unit 
1 Alloy State (Poly- or Single-crystalline alloy) 1, -1 (PC, SC respectively) 
2 e/a Electron/atom ratio 
3 Concentration of Ni % 
4 Concentration of Mn % 
5 Concentration of Ga % 

*6 T1 (rows 1-7), TM' (rows 8-10) K 
7 TM, premartensitic temperature transformation K 

*temperatures: T1= martensitic transformation; TM'=intermartensitic transformation in Group 
III alloys. 



Table 3. Input data values (output by PHP program) 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
1 1 7.35 49.6 21.9 28.5 4.2 178 6 1 7.56 47.7 30.5 21.8 227 240 
2 1 7.36 47.6 25.7 26.7 4.2 152 7 1 7.57 51.1 24.9 24 197 248 
3 -1 7.45 49.7 24.3 26 183 218 8 -1 7.78 53.1 26.6 20.3 417 379 
4 1 7.5 50.9 23.4 25.7 113 224 9 -1 7.83 51.2 31.1 17.7 443 415 
5 -1 7.51 49.2 26.6 24.2 184 240 

 

10 -1 7.91 59 19.4 21.6 633 517 
 
 Program computes and output the regression equations. With an rrq = 0.9 the program 
found over 60 different implicit equations of linear regression with r > rrq, almost impossible 
to obtain by hand or in some program with statistics kernel. If value of rrq is increased to rrq = 
0.99, number of implicit equation founded is reduced at 29. For rrq = 0.999 number of implicit 
equation founded is 12. 
 That is a large set! If we are interested to study dependence between two variables 
form set, then we select the proper table from output of the program. Best result is displayed 
in table 4, and it correlate the temperatures T1 and TM: 
 
Table 4. Linear regression between martensitic, premartensitic and intermartensitic temperatures 

x0 x1 x2 x3 x4 x5 x6 Equation Residue Correlation 
0 0 0 0 0 1 1 +x5*1.00-x6*1.80=-2.73*102 0.37      0.98369 
0 0 0 0 0 1 1 -x5*0.55+x6*1.00=+1.50*102 0.21      0.98369 
0 0 0 0 0 1 1 +x5*3.66*10-3-x6*6.62*10-3=-1.00 0.42      0.98369 

 
 If we are looking for totally dependent variables (and here exists, sum of 
concentrations is 100%), the program finds it and also eliminate one of them from set. In table 
5 is showed program response for correlating variables x2, x3 and x4 (dependent variable: x2): 
 
Table 5. Founded dependent variable in group of concentrations of Ni(x2), Mn(x3) and Ga(x4) 
x0 x1 x2 x3 x4 x5 x6 Equation Residue Correlation 
0 0 1 1 1 0 0 +x2*1.00+x3*1.00+x4*1.00=+1.00*102 0.00      1.00000 
0 0 1 1 1 0 0 +x2*1.00+x3*1.00+x4*1.00=+1.00*102 0.00      1.00000 
0 0 1 1 1 0 0 +x2*1.00+x3*1.00+x4*1.00=+1.00*102 0.00      1.00000 
0 0 1 1 1 0 0 -x2*1.00*10-2-x3*1.00*10-2-x4*1.00*10-2=-1.00 0.00      1.00000 
 
 If we are looking for dependences between e/a and concentrations, simply select the 
founded equations from program output. In table 6 is showed the dependence of e/a by 
concentration of Ni and Mn: 
 
Table 6. Dependence of e/a by Ni(x2) and Mn(x3) expressed by explicit and implicit equations 

x0 x1 x2 x3 x4 x5 x6 Equation Residue Correlation 
0 1 1 1 0 0 0 +x1*1.00-x2*7.02*10-2-x3*3.99*10-2=+2.98 7.35*10-4      0.99995 
0 1 1 1 0 0 0 -x1*1.42*101+x2*1.00+x3*0.56=-4.25*101 1.55*10-3      0.99997 
0 1 1 1 0 0 0 -x1*2.50*101+x2*1.75+x3*1.00=-7.47*101 5.43*10-3      0.99992 
0 1 1 1 0 0 0 -x1*0.33+x2*2.34*10-2+x3*1.33*10-2=-1.00 1.86*10-3      0.99995 



 If we are looking to express one of the temperatures depending by concentrations, then 
the following equations are useful (table 7). 

The equations that contain maximum of independent terms (without one 
concentration) is given at the end of output file of the program (table 8). 
 
Table 7. Dependence of TM (premartensitic temperature) by Mn(x3) and Ga(x4) concentrations 
x0 x1 x2 x3 x4 x5 x6 Equation Residue Correlation 
0 0 0 1 1 0 1 +x3*0.56+x4*1.00+x6*2.36*10-2=+4.45*101 4.88*10-2      0.99300 
0 0 0 1 1 0 1 +x3*2.37*101+x4*4.23*101+x6*1.00=+1.88*103 0.16      0.99012 

 
Table 8. Most comprehensive multi-linear dependence in data set 
x0 x1 x2 x3 x4 x5 x6 Equation Residue Correlation 

1 1 0 1 1 1 1 -x0*6.77*10-4+x1*1.00+x3*2.79*10-2 

+x4*6.61*10-2+x5*5.27*10-6-x6*1.09*10-4=+9.82 4.12*10-4      0.99999 

1 1 0 1 1 1 1 -x0*2.42*10-2+x1*3.57*101+x3*1.00 
+x4*2.36+x5*1.88*10-4-x6*3.92*10-3=+3.51*102 4.36*10-3      0.99995 

1 1 0 1 1 1 1 -x0*1.02*10-2+x1*1.51*101+x3*0.42 
+x4*1.00+x5*7.97*10-5-x6*1.65*10-3=+1.48*102 1.98*10-3      0.99999 

1 1 0 1 1 1 1 +x0*6.17-x1*9.11*103-x3*2.54*102 

-x4*6.03*102-x5*4.80*10-2+x6*1.00=-8.95*104 9.44*10-2      0.99668 

 

550 
TM = 585.36·(e/a) - 4157.1 

R2 = 0.957 

TM 

250 

350 

450 

550 

TM = 1·TM,e+0 

TM,e 

TM,e = -x0·7.38+x1·9440 
+x3·263+x4·623-92700 

TM 

R2 = 0.993 

150 150 
7.33 7.53 7.73 7.93 150 250 350 450 550 

250 

350 

450 

 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) Regression between TM and e/a; (b) TM and (Alloy state, e/a, %Mn, %Ga) 
  

In figure 3 are plotted some selected dependences from data set. Figure 3a show a 
mono-variable dependence between TM and e/a, and figure 3b swow a multi-linear variable 
dependence between TM and alloy state (codified by -1 and 1) electron/atom ratio and 
composition (%Mn and %Ga). 
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Fig. 4. (a) surface plot of T1 and (b) e/a by composition (%Ni,%Mn) 



Figures 4b and 4c show surface dependences of T1 and respectively e/a of composition 
(%Ni, %Mn). 
 
 
5. CONCLUSIONS 
 

Looking to the output sums of residues from tables, is easy to observe now that the 
properties: type of alloy, and his martensitic, intermartensitic and premartenistic temperatures 
are interrelated together; these properties have the same order of sum residues in global 
equation, that is also expected conclusion. Very small same order of sum residues for 
concentrations suggest a strong interrelation between them, that is also true, because 
%Ni+%Mn+%Ga = 100. This conclusion lead to consider the 3D plots fitted in figure 3 (b 
and c) of electron/atom ratio and T1 temperature dependencies by concentration (%Ni,%Mn). 
The figure 3a prove good correlation between T1 and e/a. 
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