AUTOMAT SERVER SIDE PROCESSING OF STATISTICAL DATA # Lorentz JÄNTSCHI Technical University of Cluj-Napoca, Romania #### **Abstract** The present paper is focused on modeling of statistical data processing with applications in field of material science and engineering. A new method of data processing is presented and applied on a set of 10 Ni–Mn–Ga ferromagnetic ordered shape memory alloys that are known to exhibit phonon softening and soft mode condensation into a premartensitic phase prior to the martensitic transformation itself. The method allows identifying the correlations between data sets and exploiting them later in statistical study of alloys. An algorithm for computing data was implemented in preprocessed hypertext language (PHP) and a hypertext markup language interface for them was also realized and putted onto lejpt.utcluj.ro server at the address http://lejpt.utcluj.ro/~lori/research/alloys. The program running for the set of alloys allow to identify groups of alloys properties and give qualitative measure of correlations between properties. Surfaces of property dependencies are also fitted. Keywords: data processing; correlations between data sets; statistics algorithm; preprocessed hypertext language; server side processing. #### INTRODUCTION Many statistical procedures for processing data are available.[1] Most of them offer a voluble set of possibilities and variants, but which one to consider them? That is not a easy question and the frequent answer is: that is choice of analyst.[2,3] Data mining technology offer in this area of knowledge some answers, but not a complete answer.[4] By other hand, to interpret experiment results. data need to be well processed.[5] Structure investigations are frequently combined with statistical processing.[6] In most of cases, best results are obtained with specific procedures in contrast to general numeric algorithms.[7,8] Modeling structure benefit to of is property statistical predictions.[9,10] Nonstandard evaluation procedures then are helpful.[11] The presented model make data preprocessing to a set of 10 Ni–Mn–Ga ferromagnetic ordered shape memory alloys that are known to exhibit phonon softening and soft mode condensation into a premartensitic phase prior to the martensitic transformation itself and is a extension added to the model presented in book [12]. # **METHOD** The logic scheme of data preprocessing is presented in figure 1. The INPUT module read a text format data, process input data, split it into rows and columns and computes average means. If name n_rows it assigned to number of rows, n_cols to number of columns, data to array of data, the output of module INPUT is computed by formulas: $$M[i,j] = \frac{\sum_{k=1}^{n \text{ rows}} data[k][i] \cdot data[k][j]}{n \text{ rows}};$$ (1a) Fig. 1. Data automat processing algorithm Linear regression and PLS (partial least squares) are most used methods in statistical processing of data. Presented method uses them. The output of INPUT module is used as input in GAUSS and RESULTS modules. GAUSS module solves a linear system of equations in form (2): $$\begin{cases} M[1,1] \cdot x_1 + ... + M[1,j] \cdot x_j + ... + M[1,n_cols] \cdot x_{n_cols} &= 1 \\ ... & ... \\ M[i,1] \cdot x_1 + ... + M[i,j] \cdot x_j + ... + M[i,n_cols] \cdot x_{n_cols} &= 1 \\ ... & ... \\ M[n_cols,1] \cdot x_1 + ... + M[n_cols,j] \cdot x_j + ... + \\ & + M[n_cols,n_cols] \cdot x_{n_cols} &= 1 \end{cases}$$ If answer of algorithm solving is *undetermined system* and null variable is x_{n_cols} then GAUSS module solve determined system of *n cols* order given by equation (3): $$\begin{cases} M[1,1] \cdot x_1 + ... + M[1,j] \cdot x_j + ... + \\ & + M[1,n_cols-1] \cdot x_{n_cols-1} &= M[0,1] \\ ... & ... \\ M[i,1] \cdot x_1 + ... + M[i,j] \cdot x_j + ... + \\ & + M[i,n_cols-1] \cdot x_{n_cols-1} &= M[0,j] \\ ... & ... \\ ... & ... \end{cases}$$ If answer of algorithm solving is *undetermined system* and null variable is different form x_{n_cols} then GAUSS module pass extended system matrix to DEC module. If input in DEC module is *undetermined system* this it extract null row and column corresponding to the null variable (figure 2) and the resulting matrix of (n_cols-1)× n_cols dimension is passed again to GAUSS module. Fig. 2. Processing data in DEC module When system is solved a unique solution is found. Then, System extended matrix contain at column n_cols the coefficients of regression equation: $$a_1 \cdot x_1 + \dots + a_i \cdot x_i + \dots + a_{n \text{ cols}+1} = 0$$ (4) where the coefficients a_{n_cols+1} and a_{n_cols+1} result different by case of reducing order of system (equation 2 or 3). Thus, if is applied equation 2, then: $$a_{n \text{ cols}+1} = 1 \tag{5}$$ else (is applied equation 3): $$a_{\text{n cols}} = 1, a_{\text{n cols}+1} = 0$$ (6) At end of module SOLUTION it result an implicit linear regression equation between given variables through his values in columns (equation 4). Equation 4 can be exploited to obtain explicit linear regression equations for each variable that has no null coefficient a_i: $$\mathbf{x}_{i} = \left(\frac{\mathbf{a}_{1}}{-\mathbf{a}_{i}}\right) \cdot \mathbf{X}_{1} + \dots + \left(\frac{\mathbf{a}_{i-1}}{-\mathbf{a}_{i}}\right) \cdot \mathbf{X}_{i-1} + \left(\frac{\mathbf{a}_{i+1}}{-\mathbf{a}_{i}}\right) \cdot \mathbf{X}_{i+1} + \dots + \left(\frac{\mathbf{a}_{n_cols}}{-\mathbf{a}_{i}}\right) \cdot \mathbf{X}_{n_cols} + \left(\frac{\mathbf{a}_{n_cols+1}}{-\mathbf{a}_{i}}\right)$$ (7) Sum of residues can be now evaluated: $$S_{i} = \left(\frac{a_{n_cols+l}}{a_{i}} + \sum_{j=l}^{n_cols} \frac{a_{j}}{a_{i}} \cdot X_{i}\right)^{2}$$ (8) To compare one equation to another, a order value is required. Let to explicit this. If x_1 values (data[1] from input) are percents expressed in values from 0 to 100 and x_2 is premartensitic temperature transformation expressed in K with values from 100 to 600, then also sum of residues are expressed square of same measurement units. To make independence of measurement unit and measure order, values S_i are divided with own sum of squares of variable measurements (M[i,i] from INPUT module, equation 1). Final equation, with substitution $x_i = \text{data}[k,i], \ 1 \leq k \leq n$ rows and summing is: $$Q_{i} = \sum_{k=1}^{n} \left(\frac{a_{n_cols+1}}{a_{i}} + \sum_{j=1}^{n_cols} \frac{a_{j}}{a_{i}} \cdot data[k,i] \right)^{2} / M[i,i]$$ (9) and express relative residues of variable x_i when variable x_i is assumed to be dependent of independent variables $x_1, \ldots, x_{i-1}, x_{i+1}, x_{cols}$. Note that the dependence and independence statistical concept is hard to prove in practical situations, but will see later, can be decelerated. #### ALGORITHM AND IMPLEMENTATION The implementation of algorithm is relative simple, if are used a flexible language processing. In terms of programming, portability of resulted program can be a problem. As example, if we are chose to implement the algorithm in Visual Basic, the execution of the program is restricted to Windows machines. If Perl is our choice, a Unix-based machine is necessary to run program. Even if we chouse to implement the program in C language, we will have serious difficulties to compile the programs on machines running with different operating systems. Other questions require an answer: We want a server based application or client based application? We want a server side application or a client side application? As example, a client side application can have disadvantage of execution on client, and dependence of processing speed by power of client machine. If we prefer this variant, a java script or visual basic script is our programming language. Most benefit to portability and execution speed seems to be a PHP (post processed hypertext) variant of implementation. A PHP script can be putted on any server or client with PHP processor and executed from them trough http server (Apache, Squid, ...) and client (Internet Explorer, Netscape). Another advantage of PHP using is the possibility to link our algorithm with a materials database (d-Base, Interbase, MySQL, PostGres format) and input data can be then loaded from them. As conclusion, a PHP implementation is our choice. A graphical interface was built in html with a TEXTAREA for input data and an INPUT SUBMIT button for submitting data to the server. The server is a Free BSD Unix based server with an Apache web server running on. The server is hosted in educational network of Technical University of Cluj-Napoca with address 193.226.7.140 and name lejpt.east.utcluj.ro. Five alias names are also available for them: lori.east.utcluj.ro, lejpt.utcluj.ro, ljs.utcluj.ro, www.lejpt.utcluj.ro, www.ljs.utcluj.ro. With PHP technology, was build a routine for pseudo domain names, that redirect client to different pages, depending on his input of domain name in client http browser. The program build have 14 subroutines and a main program, specified in Table 1: Table 1. Module Specification | | lule Specification | |-------------------------------|------------------------------------| | Module declaration | Specification | | function do_means | make all (xi, xi*xj) means | | (&\$data,&\$mean,\$n rows, | | | \$n cols) | | | function af mt | display any matrix with an title | | (\$titlu,&\$mean,\$n_r,\$n_c) | | | function ch ln | Gauss linear algebra method, | | (\$11,\$12,&\$cc,\$r) | change two lines in system | | (\$11,\$12,86,61) | extended matrix | | function mx rw | | | _ | Gauss linear algebra method, | | (\$cl,&\$cc,\$r) | best line for zeroes in system | | C | extended matrix | | function im_ln | Gauss linear algebra method, | | (\$nr,\$rw,&\$cc,\$r) | make unitary element in | | | system extended matrix | | function ze_sd | Gauss linear algebra method, | | (\$e,&\$cc,\$r) | make subdiag. zeroes in | | | system extended matrix | | function ze_pd | Gauss linear algebra method, | | (&\$cc,\$r) | make supdiag. zeroes in | | | system extended matrix | | function rd gs | Gauss linear algebra iterative | | (&\$cc,\$r) | algorithm | | function cine e nul | find bad variable in an | | (&\$mean, \$n_cols) | undetermined system | | function elimin | remove column of bad | | | | | (\$pe_cine,&\$din_cine, | variable in an undetermined | | \$n_rows,\$n_cols) | system | | function ec_reg | build coefficients from tables | | (&\$mean,&\$nule,\$n_cols, | of solutions for given system | | &\$ecuatia,\$origin) | | | function sum_r | compute sums of residues | | (&\$d,&\$ecuatia,\$r,\$by) | from original data and | | | equation of regression | | function af_ec | format and display regression | | (&\$ecuatia) | equation | | function n_to_s | format and display a real | | (\$nr) | number | | function cnk | make recursive all possible | | (\$n,\$k,&\$tab,&\$corr, | combination c(n,k) | | &\$data,\$n row) | | | function af t | prepare and make linear | | (&\$t,\$n,&\$c,&\$data, | regression in subset k of set n | | \$n row,\$k,\$n old) | 10510551011 III SUUSOt K OI SOt II | | function data copy | conv a given column of data in | | _ 12 | copy a given column of data in | | (&\$d,&\$d_t,\$n_r,\$kj,\$k0) | a new data variable | | function res(&\$t,\$n) | reset counter for recursive | | | c(n,k) | | function read_data | reading data from input | | (&\$input,\$n_rows,&\$n_col | | | s,&\$data) | | | function make_reg | return 0 if don't exist linear | | (\$n_rows,\$n_cols,&\$data, | dependence; display solution if | | &\$c,&\$data_old, | found | | &\$c_temp,\$n_o) | | | main program | solve system and display | | 1 5 | results | | | | The *cnk* module is recursively and look all subsets of k variables form set of n variables, for k from 2 to n and when it found the subset, *af_t* module is called. In *af_t* module, is tested if subset is *totally dependend* (null sum of residues). If it is, the equation is printed and one variable removed from set. ## RESULTS AND DISCUSSION A set of Ni–Mn–Ga ferromagnetic ordered shape memory alloys are used for investigation.[13] Table 2. Processed Data | Column | Property | Measurement | | |--------|--|---------------|--| | | | unit | | | 1 | Alloy State (Poly- or Single- | 1, -1 (PC, SC | | | | crystalline alloy) | respectively) | | | 2 | e/a | Electron/atom | | | | | ratio | | | 3 | Concentration of Ni | % | | | 4 | Concentration of Mn | % | | | 5 | Concentration of Ga | % | | | *6 | T_1 (rows 1-7), T_M ' (rows 8-10) | K | | | 7 | $T_{\rm M}$, premartensitic temperature | K | | | | transformation | | | ^{*}temperatures: T₁= martensitic transformation; T_M'=intermartensitic transformation in Group III alloys. Table 3. Input data values (outputted by PHP program) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----|----|------|------|------|------|-----|-----| | 1 | 1 | 7.35 | 49.6 | 21.9 | 28.5 | 4.2 | 178 | | 2 | 1 | 7.36 | 47.6 | 25.7 | 26.7 | 4.2 | 152 | | 3 | -1 | 7.45 | 49.7 | 24.3 | 26.0 | 183 | 218 | | 4 | 1 | 7.50 | 50.9 | 23.4 | 25.7 | 113 | 224 | | 5 | -1 | 7.51 | 49.2 | 26.6 | 24.2 | 184 | 240 | | 6 | 1 | 7.56 | 47.7 | 30.5 | 21.8 | 227 | 240 | | 7 | 1 | 7.57 | 51.1 | 24.9 | 24.0 | 197 | 248 | | 8 | -1 | 7.78 | 53.1 | 26.6 | 20.3 | 417 | 379 | | 9 | -1 | 7.83 | 51.2 | 31.1 | 17.7 | 443 | 415 | | 10 | -1 | 7.91 | 59.0 | 19.4 | 21.6 | 633 | 517 | Program computes and output the regression equations. These equations are listed in following table: Table 4. Output equations by unary variable coefficient (outputted by PHP program) | 1 | $+x_2*1.00*10^{-2}+x_3*9.99*10^{-3}+x_4*9.99*10^{-3}-1.00=0$ | |----|---| | 2 | $+x_2*1.00+x_3*0.99+x_4*0.99-9.99*10^1=0$ | | 3 | $+x_2*1.00+x_3*1.00+x_4*0.99-1.00*10^2=0$ | | 4 | $+x_2*1.00+x_3*1.00+x_4*1.00-1.00*10^2=0$ | | 5 | | | 6 | $+x_0*1.00-x_1*1.47*10^3-x_3*4.12*10^1-x_4*9.76*10^1$
$-x_5*7.78*10^{-3}+x_6*0.16+1.44*10^4=0$ | | 7 | | | 8 | | | 9 | $ \begin{vmatrix} -x_0*1.02*10^{-2} + x_1*1.51*10^1 + x_3*0.42 + x_4*1.00 \\ +x_5*7.97*10^{-5} - x_6*1.65*10^{-3} - 1.48*10^2 = 0 \end{vmatrix} $ | | 10 | $ \begin{vmatrix} -x_0*1.28*10^2 + x_1*1.89*10^5 + x_3*5.29*10^3 + x_4*1.25*10^4 \\ +x_5*1.00 - x_6*2.07*10^1 - 1.86*10^6 = 0 \end{vmatrix} $ | | 11 | $ \begin{vmatrix} +x_0*6.17-x_1*9.11*10^3-x_3*2.54*10^2-x_4*6.03*10^2-\\ x_5*4.80*10^{-2}+x_6*1.00+8.95*10^4=0 \end{vmatrix} $ | Sum of residues Q are presented in table 5. Table 5. Output sums of residues in same order as in Table 4 (outputted by PHP program) | | r (outputted by 1111 program) | |----|---| | 1 | Sum of residues=0 | | 2 | Residues (by x ₂)=1.9746766179492E-25 | | 3 | Residues (by x ₃)=1.9561226094584E-25 | | 4 | Residues (by x ₄)=1.9217913828632E-25 | | 5 | Sum of residues=1.0151376390882E-07 | | 6 | Residues (by x ₀)=21.337653561715 | | 7 | Residues (by x ₁)=9.8070949373515E-06 | | 8 | Residues (by x ₃)=0.012552830757521 | | 9 | Residues (by x ₄)=0.0022382916547526 | | 10 | Residues (by x ₅)=352280.9067829 | | 11 | Residues (by x ₆)=814.44428122433 | Fig. 4 Surface plot of T_1 by composition (%Ni,%Mn) Fig. 5 Surface plot of e/a by compozition (%Ni,%Mn) ## **CONCLUSIONS** Looking to the output sums of residues from table 5, is easy to observe now that the properties type of alloy, and his martensitic, intermartensitic and premartenistic temperatures are interrelated having same order of sum residues in global equation, that is also expected conclusion. Very small same order of sum residues for concentrations suggest a strong interrelation between them, that is also true, because %Ni+%Mn+%Ga=100. This conclusion lead to consider the 3D plots fitted in figure 3 (b and c) of electron/atom ratio and T_1 temperature dependencies by concentration (%Ni,%Mn). The figure 3a prove good correlation between T_1 and e/a. [14] ## **ACKNOWLEDGMENTS** Author is grateful to the rector of Technical University of Cluj-Napoca, prof. dr. ing. Gheorghe Lazea for his policy on promoting information technology and also to the university staff for support in internet connection of lejpt web server. Useful support was also benefit from Romanian Ministry of Education for finance funding of MEC/CNCSIS contract 468/"A"/2002 and 281/"A"/2002. #### REFERENCES - [1] H. Nascu, Lorentz Jäntschi, T. Hodisan, C. Cimpoiu, G. Câmpan, Some Applications of Statistics in Analytical Chemistry, Reviews in Analytical Chemistry, Freud Publishing House, XVIII(6), 1999, 409-456. - [2] Lorentz Jäntschi, M. Unguresan, MathLab. Statistical Applications, International Conference on Quality Control, Automation and Robotics, May 23-25 2002, Cluj-Napoca, Romania, work published in volume "AQTR Theta 13" (ISBN 973-9357-10-3) at p. 194-199. - [3] Lorentz Jäntschi, H. Nascu, Numerical Description of Titration (MathCad application), International Conference on Quality Control, Automation and Robotics, May 23-25 2002, Cluj-Napoca, Romania, work published in volume "AQTR Theta 13" (ISBN 973-9357-10-3) at p. 259-262. - [4] Lorentz Jäntschi, M. Unguresan, Parallel processing of data. C++ Applications, Oradea University Annals, Mathematics Fascicle, 2001, VIII, 105-112, ISSN 1221-1265 - [5] L. Marta, I. G. Deac, I. Fruth, M. Zaharescu, Lorentz Jäntschi, Superconducting Materials: Comparision Between Coprecipitation and Solid State Phase Preparation, International Conference on Science of Materials, August 20-22, 2000, Cluj-Napoca, Romania, work published in volume 2 (ISBN 973-686-058-2) at p. 627-632. - [6] L. Marta, I. G. Deac, I. Fruth, M. Zaharescu, Lorentz Jäntschi, Superconducting Materials at High Temperature: Thermal Treatment and Pb Addition, International Conference on Science of Materials, August 20-22, 2000, Cluj-Napoca, Romania, work published in volume 2 (ISBN 973-686-058-2) at p. 633-636. - [7] C. Cimpoiu, Lorentz Jäntschi, T. Hodisan, A New Method for Mobile Phase Optimization in High-Performance Thin-Layer Chromatography (HPTLC), Journal of Planar Chromatography Modern TLC, Springer, 11(May/June), 1998, 191-194, ISSN 0933-4173. - [8] C. Cimpoiu, Lorentz Jäntschi, T. Hodisan, A New Mathematical Model for the Optimization of the Mobile Phase Composition in HPTLC and the Comparision with Other Models, Journal of Liquid Chromatography and Related Technologies, Dekker, 22(10), 1999, 1429-1441, ISSN 1082-6076. - [9] M. Diudea, Lorentz Jäntschi, A. Graovac, Cluj Fragmental Indices, Math/Chem/Comp'98 (The Thirteenth Dubrovnik International Course & Conference on the Interfaces among Mathematics, Chemistry and Computer Sciences), June 22-27, 1998. - [10] Lorentz Jäntschi, G. Katona, M. Diudea, Modeling Molecular Properties by Cluj Indices, Commun. Math. Comput. Chem. (MATCH), 2000, 41, 151-188, ISSN 0340-6253 - [11] C. Sârbu, Lorentz Jäntschi, Statistic Validation and Evaluation of Analytical Methods by Comparative Studies. I. Validation of Analytical Methods using Regression Analysis (in Romanian), Revista de Chimie, Bucuresti, 49(1), 1998, 19-24, ISSN 0034-7752. - [12] Mircea Diudea, Ivan Gutman, Lorentz Jäntschi, Molecular Topology, Nova Science, Huntington, New York, 2001, 332 p., ISBN 1-56072-957-0. - [13] V.A. Chernenko, J. Pons, C. Seguý, E. Cesari, Premartensitic phenomena and other phase transformations in Ni–Mn–Ga alloys studied by dynamical mechanical analysis and electron diffraction, Acta Materialia, 50 (2002), 53–60, Elsevier, USA. - [14] Lorentz Jäntschi, Real Time Property Investigation in Sets of Alloys, International Conference on Advanced Materials and Structures (AMS 2002), 19 21 September 2002, Timisoara, Romania.